Name	#
Date	Pd.

Calculate density, and identify substances using a density chart.

Density is a measure of the amount of mass in a certain volume. This physical property is often used to identify and classify substances. It is usually expressed in grams per cubic centimeters, or g/cm³. The chart on the right lists the densities of some common materials.

Equation: Density = $\underline{\text{mass}}_{Volume}$ or $D = \underline{m}_{V}$

Substance	Density (g/cm ³)
Gold	19.3
Mercury	13.5
Lead	11.4
Iron	7.87
Aluminum	3.7
Bone	1.7-2.0
Gasoline	0.66-0.69
Air (dry)	0.00119

Problem Statement	Formula	Define Variables	Substitution	Answer
Sample: What is the density of a billiard ball that has a volume of 100 cm ³ and a mass of 250 g?	$D = \underline{m}$ V	M = 250 g $V = 100 \text{ cm}^3$	$D = \frac{250 \text{ g}}{100 \text{ cm}^3}$	2.5 g/cm ³
1. A loaf of bread has a volume of 2270 cm ³ and a mass of 454 g. What is the density of the bread?				
2. A block of wood has a density of 0.6 g/cm ³ and a volume of 1.2 cm ³ . What is the mass of the block of wood?				
3. A 800g boulder has a density of 8 g/cm ³ . What is the volume of the boulder?				
4.What is the mass of the block of iron illustrated below? 2 cm 10 cm				

Use the data below to calculate the density of each unknown substance. Then use the density chart above to determine the identity of each substance.

Mass (g)	Volume (cm ³)	D = m/v Variable Substitutions	Density (g/cm ³)	Substance
4725	350	$D = \frac{4725}{350}$	D = 13.5	Mercury
171	15			
148	40			
475	250			
680	1000			